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Abstract

We study the notion of a computable normed almost linear space and examine some
results of the theory of operators in normed almost linear spaces in the context of com-
putability. Specifically, we establish the effectivity of the Inverse Mapping Theorem in the
normed almost linear spaces. We use the Type-2 Theory of Effectivity (TTE) or the repre-
sentations based approach to computability in this paper.

1 Introduction

The normed almost linear spaces (nals) are a framework for studying the theory of best simultane-
ous approximation in a normed linear spaces (nls) [3]. An almost linear space is a generalization
of a linear space. A linear space is an abelian group with a group action, scalar multiplication,
on a field. An almost linear space has all the axioms of a regular linear space except the exis-
tence of additive (right) inverses. We usually only define the almost linear space (als) on the R
field. In [2], Brattka defines computability in Banach spaces and other normed spaces using the
notion of separability, this is because we need a dense subset of the space to define an admissible
representation on it, and working with separable spaces gives us a very natural way to define
one.

Formally we say, an almost linear space is a set X with the mappings s : X×X → X (addition,
where s(x, y), x, y ∈ X is denoted by x + y) and m : R ×X → X (scalar multiplication, where
m(λ, x), λ ∈ R, x ∈ X is denoted by λx) satisfying the following axioms for all x, y, z ∈ X,λ, µ ∈
R. (L1) x+ (y + z) = (x+ y) + z (L2) x+ y = y + x (L3) ∃0 ∈ X such that 0 + x = x (L4)
1x = x (L5) 0x = 0(L6) λ(x+ y) = λx+ λy (L7) (λµ)x = λ(µx) (L8) (λ+ µ)x = λx+ µx for
λ ≥ 0, µ ≥ 0

We define a norm on an als X, || · || : X → R. This is the same norm we are familiar with,
when an almost linear space is equipped with it we call it a normed almost linear space. A norm
satisfies the following axioms for all x, y ∈ X,w ∈ WX and λ ∈ R.

(N1) ||x|| = 0 iff x = 0

(N2) ||λx|| = |λ|||x||
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(N3) ||x+ y|| ≤ ||x||+ ||y||

(N4) ||x|| ≤ ||x+ w||

We will define two important subsets for a nals.

VX = {x ∈ X | x− x = 0} (1)

WX = {x ∈ X | x = −x} = {x− x | x ∈ X} (2)

VX is a linear subspace of X, and WX is an almost linear subspace of X. Of course, we have
WX ∩ VX = {0}. An als X is a linear space iff WX = {0}.

We will now very briefly summarise the basic facts about the representation based approach
to computability in the reals. This approach is based on inducing computability on objects
through their representations, which are ways of representing mathematical objects like real
numbers or real-valued functions using infinite strings. However, we only work with a certain
class of representations, which allow for the property that finite approximations of the output
of a computation are determined by finite portions of the input. In classical computability we
work with the set of all finite words Σ∗, here Σ is the alphabet, in computable analysis we extend
this idea to work with the set of all infinite words, Σω. Formally, a representation is a surjective
function δ :⊆ Σω → M , where M is a set of objects such as R or C[0, 1]. ⟨·, ·⟩ : Σa × Σb → Σc is
a tupling function where a, b, c are ∗ or ω depending on the context and c depends on a, b. For
any object q ∈ M , if σ : Σ∗ → M and w ∈ Σ∗ such that σ(w) = q, we write w := σ(w). We work
only with admissible representations for the convenient fact that continuity induced by them on
functions on the represented sets is equivalent to the topological continuity of these functions,
for more details refer [7].

2 Basic definitions

We will now look at a few definitions which are necessary for our construction of a computable
normed almost linear space. A represented space is a 2-tuple (X, δ) where X is a set and
δ :⊆ Σω → X is a representation of X. We call a word function, F :⊆ Σω → Σω computable if
there exists a Type-2 Turing machine (TM) [7] which on reading input p continually writes F (p)
on its output tape and for input p /∈ dom(F ) the TM loops or diverges, i.e., computes infinitely.
We state a few more definitions, from [2].

Definition 1 (Computable Function). Let (X, δ) and (Y, δ′) be represented spaces. Then a
function f :⊆ X → Y is called (δ, δ′)–computable if there exists a computable word function
F : Σω → Σω such that

f ◦ δ(p) = δ′ ◦ F (p)

for all p ∈ dom(f ◦ δ).

A computable metric space is simply one which has a computable metric and in which an
admissible representation can be defined, that is, the existence of a dense subset and a computable
notation for the subset. Notations are naming systems which have their domain in Σ∗, in contrast
to representations which have their domain in Σω.

Definition 2 (Computable Metric Space). A tuple (X, d, α) is called a computable metric space,
if
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1. d : X ×X → R is a metric on X,

2. α : N → X is a sequence dense in X,

3. d ◦ α× α : N2 → R is a computable double sequence in R.

Given a metric space we define its cauchy representation as δX :⊆ Σω → X such that

δX(01n101n201n3 . . .) := lim
i→∞

α(ni)

such that the limit exists and d(α(ni), α(nj)) < 2−i,∀j ≥ i. The defined cauchy representation
is admissible, for this, the existence of a dense subset is essential. This is something we will also
need in our construction of a computable metric almost linear space.

2.1 Computable Normed Almost Linear Space

In [2], Brattka defines a computable linear space by any linear space which has computable
addition and scalar multiplication and where 0 is a computable element of the linear space.
Inspired by this, we give the following definition.

Definition 3 (Computable Almost Linear Space). A represented space (X, δ) is called a com-
putable almost linear space (over R), if (X,+, ·, 0) is an als such that the following conditions
hold:

1. + : X ×X → X, (x, y) 7→ x+ y is computable,

2. · : R×X → X, (a, x) 7→ a · x is computable,

3. 0 ∈ X is a computable element.

We return to the theory of normed almost linear spaces and define some objects and introduce
some theorems necessary for our main result.

Definition 4 (Semi-metric). A function ρ : X ×X → R is said to be a semi-metric if it satisfies
the following conditions for all x, y, z ∈ X

1. ρ(x, y) = ρ(y, x) ≥ 0

2. ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

3. x = y =⇒ ρ(x, y) = 0

A semi-metric satisfies all the conditions that a metric does except ρ(x, y) = 0 =⇒ x = y.
As such, it generates a topology on the set it is defined.

A cone in an als X is a set C ⊆ X such that λx ∈ C, ∀x ∈ X,λ ≥ 0. We say V is a convex
subset if λx+(1−λ)y ∈ V,∀λ ∈ [0, 1] and x, y ∈ V . Let X,Y be almost linear spaces, T : X → Y
is called a linear operator if T (αx+βy) = αT (x)+βT (y) where α, β ∈ R and x, y ∈ X. We now
mention an important theorem of normed almost linear spaces ([4], Theorem 3.2).

Theorem 1. For any nals (X, ∥·∥) there exist a normed linear space (EX , ∥·∥EX
) and a mapping

ωX : X → EX with the following properties:

(i) The set X1 = ωX(X) is a convex cone of EX such that EX = X1 − X1, and X1 can be
organized as an als where the addition and the multiplication by non-negative reals are the
same as in EX .
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(ii) For each z ∈ EX we have:

∥z∥EX
= inf{∥x1∥+ ∥x2∥ : x1, x2 ∈ X, z = ωX(x1)− ωX(x2)} (3)

and the als X1 together with this norm is a nals.

(iii) The mapping ωX from X onto the nals X1 is a linear operator and ∥ωX(x)∥EX
= ∥x∥ for

each x ∈ X.

We will skip using the subscript X for EX , ωX for the rest of the text. We have some
important consequences of this theorem, ω(WX) = WX1

and ω(VX) = VX1
. And, if ω : X → X1

is one-one then ω−1 : X1 → X is also linear. Using this theorem we can also define a semi-metric
for all nals ([4], Corollary 3.3).

Corollary 1. For any nals (X, ∥ · ∥) the function

ρ(x, y) = ∥ω(x)− ω(y)∥ (x, y ∈ X)

is a semi-metric on X and we have:

ρ(−1x,−1y) = ρ(x, y) (x, y ∈ X) (4)

This semi-metric ρ is a metric when ρ is one-one. We can now talk about topological properties
like continuity, openness, closeness, etc. since the semi-metric for a nals generates a topology.
Note, if A is a closed subset of a nals X, then ω(A) is a closed subset of X1 [5].

To define an admissible representation on a topological space, we need a second countable
T0 space. The semi-metric on a nals given by corollary 1 generates a topology that is not T0

in general, see that ρ(x, y) = 0 ⇏ x = y. This means that we can not define a computable
semi-metric space in the lines of a computable metric space, since a semi-metric space is not
guaranteed to be a T0 space and can not necessarily have an admissible representation defined
on it.

Let X,Y be two almost linear spaces and C a convex cone of Y [5].

Definition 5 (Almost Linear Operator). A mapping T : X → Y is called an almost linear
operator with respect to C if the following three conditions hold:

5.1 T (x1 + x2) = T (x1) + T (x2) (x1, x2 ∈ X)

5.2 T (λx) = λT (x) (x ∈ X,λ ≥ 0)

5.3 T (WX) ⊆ C

We denote by L(X, (Y,C)) the set of all T : X → Y satisfying (5.1)–(5.3). We organize
L(X, (Y,C)) as an als in the following way: for T1, T2 ∈ L(X, (Y,C)) and λ ∈ R we define
T1 + T2 ∈ L(X, (Y,C)) and λ ◦ T ∈ L(X, (Y,C)) by

(T1 + T2)(x) = T1(x) + T2(x) (x ∈ X)

(λT )(x) = T (λx) (x ∈ X)

The additive identity 0 ∈ L(X, (Y,C)) is the operator which is identically zero. The space
L(X, (Y,C)) forms a nals when the convex set C has a special property (P).
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Definition 6. The convex cone C has property (P) in X if the relations x, y ∈ X, x+ y ∈ C
and c ∈ C imply that

max {∥x∥, ∥y∥} ≤ max {∥x+ c∥, ∥y + c∥}

For T ∈ L(X, (Y,C)), we define

∥T∥ = sup{∥T (x)∥ | ∥x∥ ≤ 1}

and L(X, (Y,C)) = {T ∈ L(X, (Y,C)) | ∥T∥ < ∞}. T is bounded if T ∈ L(X, (Y,C)), i.e., ∥T∥ <
∞. Also note

∥T∥ = sup{∥T (x)∥ | ∥x∥ ≤ 1} = sup{∥T ( x

∥x∥
)∥ | x ∈ X} = sup{ 1

∥x∥
∥T (x)∥ | x ∈ X}.

and hence ∀x ∈ X
∥T (x)∥ ≤ ∥T∥∥x∥.

We can now finally define a computable normed almost linear space. Again, we look for a
definition that is analogous to the definition of a computable normed linear space [2], that suits
our purposes.

Definition 7 (Computable Normed Almost Linear Space). A tuple (X, ∥ · ∥, e) is called a com-
putable normed almost linear space, if

1. ∥ · ∥ : X → R is a norm on X,

2. e : N → X is a complete (fundamental) sequence, i.e. its linear span is dense in X,

3. (X, d, αe) with ρ(x, y) := ∥ω(x) − ω(y)∥ where ω is one-one and αe⟨k, ⟨n0, . . . , nk⟩⟩ :=∑k
i=0 αR(ni)ei, is a computable metric space with Cauchy representation δX ,

4. (X, δX) is a computable almost linear space over R.

2.2 Hyperspace of Open sets

We will need to work with open sets in our proof of the computable version of the Banach Inverse
Mapping Theorem in nals. Hence, we define a representation for the hyperspace of open sets of
a set X [7, 2].

Definition 8 (Hyperspace of open subsets). Let (X, d, α) be a computable metric space. For
the hyperspace O(X) := {U ⊆ X : U open} of open subsets, we give the representation δO(X),
defined by

δO(X)(01
⟨n0,k0⟩01⟨n1,k1⟩01⟨n2,k2⟩ . . . ) :=

∞⋃
i=0

B(α(ni), ki).

Every representation of the hyperspace of open sets will induce a representation on the hy-
perspace of closed sets, however we will now not describe any representation for the hyperspace
of closed sets, since our proof only uses open sets.
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3 Main Results

We will first state the Inverse Mapping Theorem (Bounded Inverse Theorem) that we are familiar
with from functional analysis, for more details refer any standard textbook on functional analysis
like [6].

Theorem 2 (Inverse Mapping Theorem). If a bounded linear operator T from a Banach space
X onto a Banach space Y is bijective, its inverse T−1 is also a bounded linear operator.

We have the following theorem as the generalized version of the Inverse Mapping Theorem
([5], Theorem 6.3).

Theorem 3 (Generalized Inverse Mapping Theorem). Let X,Y be two complete normed almost
linear spaces such that both ωX and ωY are one-one. If T ∈ L(X, (Y,WY )) is one-one and onto
Y and T (WX) = WY , then the inverse operator T−1 ∈ L(Y, (X,WX)).

Similar to what Brattka does in [2, 1], an effective version of the Generalized Inverse Mapping
Theorem can ask two questions,

1. does T computable =⇒ T−1 computable?

2. is the mapping T 7→ T−1 computable?

The answer to the second question is negative in the context of the Inverse Mapping Theorem [2,
1], the same stands true for the Generalized Inverse Mapping Theorem. Take X,Y Banach spaces
where ωX , ωY are identity maps and T is a linear operator. We will have WX = WY = {0} and
theorem 3 will reduce to the Inverse Mapping Theorem. Hence the second question is not true
for the Generalized Inverse Mapping Theorem either, since it reduces to the Inverse Mapping
Theorem in the conditions described.

Our proof for the following theorem is based on the proof for the Computable Inverse Mapping
Theorem ([1], Corollary 5.3). We first state a Lemma required in the proof from ([1], Proposition
3.5).

Lemma 1. Let X be a computable metric space. The map Z : C(X) → O(X), f 7→ X \ f−1{0}
is computable and admits a computable right-inverse O(X) ⇒ C(X).

We need another lemma from ([5], Lemma 5.1). Let X1 = ωX(X), Y1 = ωY (Y ) and C1 =
ωY (C).

Lemma 2. For each T ∈ L(X, (Y,C)) there exists a unique T̃ ∈ L(X1, (Y1, C1)) such that
T̃ ωX = ωY T and ∥T̃∥ = ∥T∥.

Theorem 4 (Effective Generalized Inverse Mapping Theorem). Let X,Y be two computable
complete normed almost linear spaces such that both ωX and ωY are one-one. If T ∈ L(X, (Y,WY ))
is computable, one-one and onto Y and T (WX) = WY , then the inverse operator T−1 ∈
L(Y, (X,WX)) and is computable.

Proof. Note that since ωX , ωY are one-one, X,Y also form metric spaces, with the metric (given
by corollary 1) for both X,Y being represented by ρ, however, it will be clear from the context
which metric we wish to denote. Let α : N → X and β : N → Y be the complete sequences,
δX : Σω → X and δY : Σω → Y be the Cauchy representations of X and Y respectively. Let us
define the following function

O(T−1) : O(Y ) → O(X), V 7→ T−1(V )
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Now since, T is a computable function, it is also continuous [7] and hence, O(T−1) is well-defined.
Now take some continuous f : Y → R such that V = Y \ f−1({0}). Now,

T−1(V ) = T−1(Y \ f−1({0})) = X \ T−1(f−1({0})) = X \ (f ◦ T )−1({0})

Since T is continuous, T ∈ C(X,Y ) and the composition ◦ : C(Y,R)×C(X,Y ) → C(Y,R), (f, T ) 7→
f ◦ T is computable. From lemma 1, O(T−1) is computable. Let O(S) := O(T−1), O(S) is well-
defined and computable, whence, S is open. Let M be the Turing machine which computes a
realization of O(S). Since S is bounded (from theorem 3), there exists a rational bound s > 0
such that ∥Sy∥ ≤ s∥y∥ for all y ∈ Y and some j ∈ N such that 2j > s. We construct a Turing
machine M ′ which computes a (δY , δX)–realization of S. Given some input p = 01n001n101n20...
with y := δY (p), machine M ′ works in steps i = 0, 1, 2, ... as follows: in step i machine M ′

starts machine M with input q = 01⟨ni+j+2,ki⟩01⟨ni+j+2,ki⟩01⟨ni+j+2,ki⟩0... where ki := 2−i−j−2

and simulates M until it writes the first word 01⟨n,k⟩0. Then M ′ writes 01n on its output tape
and continues with the next step i+ 1.

Since δO(Y )(q) = B(β(ni+j+2), ki), M produces an output r with

δO(X)(r) = O(S)(δO(Y )(q)) = S(B(β(ni+j+2), ki)).

Thus, for any subword 01n which is written by M ′ in step i on its output tape, we obtain
α(n) ∈ S(B(β(ni+j+2), ki)). From lemma 2, theorem 1 and ρ(y, β(ni+j+2)) ≤ ki, it follows

ρ(Sβ(ni+j+2), Sy) = ∥ωX(Sβ(ni+j+2))− ωX(Sy)∥
= ∥S̃(ωY (β(ni+j+2)))− S̃(ωY (y))∥
≤ ∥S̃∥∥ωY (β(ni+j+2))− ωY (y)∥
≤ sρ(β(ni+j+2), y) = ski.

Then
ρ(α(n), Sy) ≤ ρ(α(n), Sβ(ni+j+2)) + ρ(Sβ(ni+j+2), Sy) ≤ 2ski < 2−i−1

and hence δX(t) = Sy holds for the infinite output t of M ′. Hence, S = T−1 is computable.

We also hold that the result that any two comparable computable complete norms are com-
putably equivalent from ([1], Theorem 5.10) is also true in nals. The proof for the following
theorem is very similar to the original result and is omitted.

Theorem 5. Let (X, ∥·∥, e) and (X, ∥·∥′, e′) be computable nals and let δ, δ′ be the corresponding
Cauchy representations of X. If δ ≤ δ′ then δ ≡ δ′.
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1986. Circolo Matematico di Palermo, 1987, pp. 309–328. url: https://eudml.org/doc/
221445.

[6] Erwin Kreyszig. Introductory functional analysis with applications. JohnWiley & Sons, 1991.

[7] Klaus Weihrauch. Computable Analysis. en. 2000th ed. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Berlin, Germany: Springer, Sept. 2000.

8

https://eudml.org/doc/221445
https://eudml.org/doc/221445

	Introduction
	Basic definitions
	Computable Normed Almost Linear Space
	Hyperspace of Open sets

	Main Results

