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Abstract . This paper is intended as a simple tutorial for computable analysis.

Computable analysis studies mathematical objects such as real numbers, functions,

and sets that can be computed by a Turing machine. In this paper we are going to
see how a real number and a function can be computed using a Turing machine, we

will be using Type-2 Theory of Effectivity for this purpose. Finally, we will see how
differentiation is not computable, but integration is computable.

1. Introduction

This paper is intended to provide a pedagogical introduction to computable analysis.
Introducing the core aspects of the theory in simple terms, and establishing the
computability or lack thereof for a few of the most used objects of analysis.

In 1936 mathematician Alan Turing published a paper called “On Computable
Numbers, with an Application to the Entscheidungsproblem” [24]. It was the first
time anyone rigorously talked about computability. Before him, Borel talked about
computable real numbers in his introduction to measure theory. Borel observed that
‘Every computable real number function is continuous’, a generalized version of this is
an important result in modern Computable Analysis. Alonzo Church, Alan Turing’s
PhD advisor developed his lambda calculus [7] which is a formal system to model
algorithms or computation, lambda calculus is equivalent to Turing’s Turing Machines
[24] which are also formal models of computation. The famous Church–Turing Thesis
states that any function that can be computed by an algorithm can also be computed
by a Turing Machine. This thesis tells us that Turing Machines are logically equivalent
to algoritms and to other models of computation like lambda calculus [3, 1]. Other
work in computability of real numbers and functions from this period, is by Banach
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and Mazur [2], Grzegorczyk [9] and Lacombe [16]. Computable analysis mixes the
fields of analysis and modern computability theory, while contemporary computability
theory only deals with finite objects, computable analysis works with infinite and often
uncountable objects, the kind most often encountered in real analysis. Computable
analysis has also been extended to infinite-dimensional settings such as Hilbert spaces,
where effective representations of frames and operators play a central role in applications
to functional analysis [19, 17, 18]. Central to this theory is the Type-2 Theory of
Effectivity (TTE), which generalizes classical computability to infinite objects, such as
real numbers represented by sequences. Modern computability theory is based on Turing
Machines and so is Computable Analysis. This tutorial introduces the representations
approach to computability of the reals, developed in the works of Hauck [10, 11] and,
Kreitz and Weihrauch [14, 27]. Alternative approaches to computability in the reals can
be found in work of Pour-El and Richard [21], further generalised by Yasugi, Mori and
Tsujii [28].

We start with defining TTE and equipping the set of all infinite words, Σω, with
the cantor topology. We then present representation theory, where computability is
induced by a representation, which are functions (notations) from the set we want to
define computability on, for instance R, to Σω. This is followed by defining computable
real numbers, and various representations of the real numbers. We conclude with
investigating the computability of familiar operators in analysis, starting with basic
arithmetic operations and proceeding with differentiation, which turns out to not be
incomputable and integration which is computable under this paradigm. We will also
look at the computability of the Heine–Borel Theorem.

2. Type-2 Theory of Effectivity

The idea of the Turing machine emerged from efforts to understand the foundations
of mathematics. In the late 19th century, Georg Cantor developed set theory, which
became the basis of modern mathematics. However, Russell’s paradox later revealed
inconsistencies in the naive form of set theory, raising doubts about the logical
foundations of mathematics. To restore certainty, David Hilbert proposed a program to
formalize all of mathematics. He believed that every mathematical statement could, in
principle, be decided by a systematic procedure. In his Entscheidungsproblem (decision
problem), Hilbert asked whether there exists an algorithm that can determine the truth
or falsity of any mathematical statement. This hope was challenged by Kurt Gödel, who,
in 1931, proved his famous Incompleteness Theorems. Gödel showed that within any
consistent mathematical system, there are true statements that cannot be proved inside
that system. Motivated by these questions, Alan Turing in 1936 introduced the concept
of a Turing machine, an abstract mathematical model designed to capture the idea
of mechanical computation. Using this model, Turing proved that there is no general
algorithm to solve the Entscheidungsproblem. His work not only answered Hilbert’s
question but also laid the foundation for modern computability theory and computer
science. For further information readers may visit references [6, 23, 12, 8, 24]. Before
defining Type-2 theory of effectivity lets first see what is Turing machine and and how
TTE is just a turing machine with infinite and multiple working tape.
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Definition 2.1 (Turing Machine). A Turing Machine is a mathematical model of
computation consisting of a finite control, an infinite tape divided into cells, and a
read–write head that moves along the tape according to a fixed set of rules.

Formally, a Turing Machine is defined as a 7–tuple

M = (Q,Σ,Γ, δ, q0, B, F ),

where the components are described as follows.

• Q is a finite, non–empty set whose elements are called states.
• Σ is a finite set called the input alphabet. The blank symbol is not contained in
Σ.

• Γ is a finite set called the tape alphabet such that

Σ ⊆ Γ.

The tape alphabet contains the input symbols, the blank symbol, and possibly
other auxiliary symbols.

• δ is the transition function, defined as a partial function

δ : Q× Γ → Q× Γ× {L,R}.
If

δ(q, a) = (p, b,D),

then when the machine is in state q and scanning symbol a, it changes its state
to p, writes the symbol b on the tape in place of a, and moves the tape head
one cell to the left or right according as D = L or D = R.

• q0 ∈ Q is the initial state of the machine.
• B ∈ Γ is the blank symbol, which appears on all tape cells except those initially

containing the input.
• F ⊆ Q is the set of final (accepting) states.

Initially, the input string is written on the tape, one symbol per cell, and the tape
head scans the leftmost symbol of the input. At each step, the Turing Machine applies
the transition function δ to determine its next move. The computation halts if the
machine enters a final state or if no transition is defined [13].

The Type-2 Theory of Effectivity (TTE) is a formal framework in computable analysis
that extends classical computability theory to handle real numbers, functions, and
other continuous structures. It defines how we can effectively compute with infinite
objects by representing them as sequences of finite approximations. The classical notion
of computability cannot be applied to function of real numbers as these can not be
represented by finite words .Type-2 theory of effectivity extend Type-1 computability
by taking function f : Σω → Σω on infinite words into account. A computable function
is given by a Type-2 machine transforming infinite sequence into infinite sequences.

Type-2 Machines: In computable analysis, a Type-2 machine is a central model
used to formalize computation on continuous objects such as real numbers and real-
valued functions. Unlike classical Turing machines, which process finite, discrete inputs,
Type-2 machines operate on infinite sequences. This makes them fundamental in
studying computable functions over the real numbers.

Structure of a Type-2 Machine: A Type-2 machine consists of three main
components:
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(1) Input Tapes: The machine has k input tapes.
(2) Working Tapes: A finite number of working tapes are available for

computation.
(3) Output Tape: There is a single output tape.

For k ≥ 0 and Y0, Y1, . . . , Yk ∈ {Σ∗,Σω}, computable functions

f :⊆ Y1 × · · · × Yk → Y0

are defined via Turing machines equipped with k one-way input tapes, finitely many
working tapes, and one one-way output tape.

Definition 2.2 (Type-2 Machine). A Type-2 machine M is a Turing machine with k
input tapes and a type specification (Y1, . . . , Yk, Y0), where each Yi ∈ {Σ∗,Σω} denotes
the nature of the input and output tapes.

We now define the computability of string functions fM :⊆ Y1 × · · · × Yk → Y0

computed by such a machine M .

Definition 2.3 (Computable String Functions). Given input (y1, . . . , yk) ∈ Y1×· · ·×Yk,
the initial configuration places the (finite or infinite) string yi ∈ Yi on tape i, directly
to the right of the head. All other cells contain the blank symbol B.

For y0 ∈ Y0:

(1) If Y0 = Σ∗, then

fM (y1, . . . , yk) = y0 ∈ Σ∗

precisely when M halts on input (y1, . . . , yk) with y0 written on the output
tape.

(2) If Y0 = Σω, then

fM (y1, . . . , yk) = y0 ∈ Σω

when M on reading finite parts of the input (y1, . . . , yk) prints finite parts of the
string y0 on the output tape, i.e., infinitely prints y0 as it progressively moves
along the one-way input tape.

A function f :⊆ Y1 × · · · × Yk → Y0 is called computable if it is realized by some
Type-2 machine M .

[25, 26].
Note that fM (y1, . . . , yk) remains undefined if the machine runs indefinitely but writes

only finitely many symbols. In this setting, we disregard such “partial” computations.
Although Type-2 machines extend classical Turing machines, their underlying

principles remain equally realistic and robust. Of course, infinite inputs, outputs, or
computations cannot literally occur in practice. However, finite computations on finite
initial segments of input already yield finite approximations of the output. These finite
approximations are implementable on physical computers, as long as time and memory
resources are sufficient. Thus, Type-2 computation can be effectively approximated on
digital computers with arbitrary precision. Equivalently, other models of computation
(such as programs written in FORTRAN, PASCAL, or C++) may also be used in place
of Type-2 machines, provided inputs and outputs are considered as one-way files of finite
or infinite symbol streams.
Generalized Church–Turing Thesis:
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A function f :⊆ Y1 × · · · × Yk → Y0 (Y0, . . . , Yk ∈ {Σ∗,Σω}) is
informally or physically computable if and only if it can be computed by
a Type-2 machine.

Because of their simplicity and concreteness, Type-2 machines provide a particularly
transparent way to connect topology, analysis, and computation. Furthermore, they
allow for a natural definition of computational complexity in realistic settings. Now
let’s see some examples .

Example 2.4. Copying Leading Zeros from an Infinite Binary Sequence. Let’s see a
function that can be computed by Type-2 Turing machine. All those strings or sequences
which can be formed using 0,1 are elements of the domain. Our function maps all leading
0s of elements of the domain.

Let Σ = {0, 1} be a finite alphabet. Define the function f : Σω → Σω as follows:

f(p) =

{
the subsequence of all leading 0s in p, if p contains at least one 1,

p, if p = 000 . . . (i.e., all zeros)

In other words, f(p) is the longest prefix of p consisting only of the symbol 0.

If p = 0001101 . . ., then f(p) = 000

If p = 000000 . . ., then f(p) = 000000 . . . (the entire sequence)
If p = 110011 . . ., then f(p) = ε (the empty sequence)

Our function can have two kinds of output, one is a finite sting and the other is
0ω, an infinite sequence of 0s. Formally, the machine reads the infinite input sequence
p = p0p1p2 . . . symbol by symbol where each symbol pi ∈ Σ. If pi = 0, the machine
writes 0 on the output tape and moves to the next symbol. If pi = 1, the machine stops
writing immediately. When the machine never encounters the symbol 1, it will forever
write 0 on the output tape.

In the first case when the TM produces a finite string then it is trivial that it is
computable. In the second case for every position n, ∃m such that the output up to
that n letters depends only on the first m symbols of the input. So the function satisfies
the finiteness property. The finiteness property states that the value of output f(p)≤n

(prefix of f(p) upto the nth letter) is dependant on only a finite part of input, only
p0, p1, ..., pm is enough to produce f(p)≤n. According to TTE a function f : Σω → Σω

is computable if there exists a Turing machine that can compute each output symbol
f(p)n using only a finite portion of input. Our function satisfies the finiteness property.
Therefore our function is computable [26]

Example 2.5. We consider the task of computing the quotient of a real number divided
by 7, assuming that the real number is given by its infinite decimal representation. The
computation is carried out digit by digit, in the same manner as the standard long
division algorithm taught in elementary arithmetic.

At each stage of the computation, the machine reads one input digit and produces one
output digit. Let an ∈ {0, . . . , 9} denote the nth digit of the input, bn ∈ {0, . . . , 9} the
nth digit of the output, and let rn−1 ∈ {0, 1, . . . , 6} be the remainder obtained from the
previous step. The next output digit and the new remainder are uniquely determined
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by the equation

10 rn−1 + an = 7 bn + rn,

where the new remainder rn again belongs to the set {0, 1, . . . , 6}.
The sign of the number and the position of the decimal point do not require any

computation and are therefore transferred unchanged from the input to the output.
Since the possible remainders are finite, the entire procedure can be described by a
finite control structure consisting of seven cases, one for each possible remainder. For
each case, ten tests corresponding to the possible input digits are sufficient to determine
the correct output digit and the next remainder. Hence, the division process can be
realized by a Type 2 machine without the need for additional work tapes. [26].

Example 2.6. Let us define a function f : R → {0, 1} as follows:

f(x) =

{
1, if x = 0

0, otherwise

If x = 0, the function outputs 1. For any other value of x, positive or negative, it outputs
0. Suppose we try to compute this function using a Type-2 machine, which receives a
name for the real number x in the form of an infinite sequence. The problem arises as
follows, a real number like x = 0.0000000000000001 is extremely close to 0, and its
name might begin identically to the name of 0 for a large number of digits. To determine
whether x = 0 exactly, the machine would need to read the entire infinite sequence of
approximations. However, a Type-2 machine can only read a finite prefix of the input
in any finite time. Therefore, it can never conclusively determine whether the input
represents exactly 0 or something very close to 0. Thus, The function is discontinuous
at x = 0. It isolates the finiteness property required for computability.

This is a classic example of a discontinuous ”jump function” that is not computable
by any Type-2 machine. It demonstrates a key limitation of Type-2 computability that
exact equality checking on real numbers is not computable, because real numbers are
represented by infinite data, which cannot be fully read or processed by a machine in
finite time.

Example 2.7 (Multiplication in the reals). Our next example is concerns multiplication
of real numbers by 3. It happens so that this operation is not computable, i.e., there
exists no Type-2 TM which takes an infinite decimal input x and outputs 3x for all
x ∈ R. Assume there exists a Type-2 TM M such that it takes an infinite decimal
expansion x and prints 3x on the output tape. Then given the input 0.3333 . . . ,M
must print either 0.999 . . . or 1.000 . . .. Assume it prints the former. The Type-2
TM M prints 0. on its output tape in some k steps after reading a prefix 0.ω of the
input. Clearly 0.ω999 . . . represents some number greater than 1

3 and 3 ·0.ω999 . . . > 1.
However, if M was given the input 0.ω999 . . . then it would, similar to the earlier case,
print 0. after k steps, giving us the contradiction. Hence no such Type-2 TM M exists.

Note, in this example our result holds true in the case where a real number is
represented as an infinite decimal expansion. It is not necessarily the case that a similar
result should be expected for other representations.
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3. Topology and Continuity in Computable Analysis

The Cantor set is constructed by successively removing the open middle third from
intervals starting with the unit interval [0, 1]. We represent elements of cantor’s set
using ternary and binary representation. Every real number x ∈ [0, 1] can be written in
the form:

x =

∞∑
n=1

an
3n

, where an ∈ {0, 1, 2}

The key characterization of the Cantor set is:

A real number x ∈ [0, 1] belongs to the Cantor set if and only if its
ternary expansion contains only the digits 0 and 2, and no digit equals
1.

This is because, in each step of the construction, removing the middle third
corresponds precisely to removing numbers whose ternary expansions have a 1 in a
specific digit place. Thus, any number that survives all steps must avoid the digit 1 in
all positions.
Let’s see some examples.
If x = 1

4 then it has a ternary expansion 0.020202 . . .3 and lies in the Cantor set.

Since x = 1
3 = 0.13 contains a 1 hence it is not in the Cantor set.

Now let’s see the binary representation of elements of cantor set. Since the only allowed
digits in the ternary expansions of Cantor set elements are 0 and 2, we can construct a
natural correspondence with binary numbers by mapping 0 to 0 and 2 to 1. This mapping
creates a bijection between the Cantor set and the set of all binary sequences, i.e.,
numbers in [0, 1] written in base 2. This identification provides a topological equivalence
between the Cantor set and the space {0, 1}N (the space of infinite binary sequences),
often referred to as the Cantor space.
Here we are, the whole point of defining and constructing the cantor set is that there is
a topological equivalence between the Cantor set and the space {0, 1}N. [26, 20, 22]

3.1. Cantor Topology on Σω. Let Σ = {0, 1} be a binary alphabet. Consider the set
Σω of infinite sequences over Σ. That is,

Σω = {p = p0p1p2 · · · | pi ∈ Σ for all i ∈ N}.

We equip this space with a topology that captures the intuition of sequences being
“close” when they share a long common prefix.

Definition 3.1 (Basic Open Sets / Cylinder Sets). For every finite word w ∈ Σ∗ (i.e.,
a finite binary string), define the cylinder set:

Uw = {p ∈ Σω | p begins with w}.

That is, Uw consists of all infinite sequences that have w as a prefix.

The collection of all such sets {Uw | w ∈ Σ∗} forms a basis for a topology on Σω,
which we call the Cantor topology.

Definition 3.2 (Cantor Topology). : The Cantor topology on Σω is the topology
generated by the basis of cylinder sets. Explicitly, a set U ⊆ Σω is open in the Cantor



8 Sujit Kumar and Hiten Dalmia

topology if and only if it can be expressed as a union of cylinder sets:

U =
⋃
w∈A

Uw, for some A ⊆ Σ∗.

In this topology, two infinite sequences are considered close if they share a long initial
segment (i.e., a long prefix). The longer the common prefix, the closer the two sequences
are. This idea aligns with the metric structure defined by

d(p, q) = 2−n, where n = min{i | pi ̸= qi}.

Continuity in the Cantor Topology. Let f : Σω → Σω be a function between two Cantor
spaces. We now define what it means for f to be continuous in the context of the Cantor
topology.

Definition 3.3 (Continuity in Cantor Space). : A function f : Σω → Σω is said to be
continuous (with respect to the Cantor topology) if

For every n ∈ N, there exists an m ∈ N such that for all sequences p, q ∈ Σω,

p[0 . . .m− 1] = q[0 . . .m− 1] ⇒ f(p)[0 . . . n− 1] = f(q)[0 . . . n− 1].

In words, the first n bits of the output f(p) depend only on the first m bits of the
input p. This definition captures the idea that small changes in the input (in the sense
of the Cantor metric) do not cause large changes in the output.

Such functions are precisely those computable by Type-2 Turing machines, since
finite input information suffices to compute any finite part of the output. Continuity
is compatible with the cylinder-set structure, and maps open sets to open sets under
pre-image [15, 20, 22].

The finiteness property for f : Σω → Σω means that given f(x) = y for an open ball
B(y, ε)∃B(x, δ) such that f(B(x, δ)) ⊆ B(y, ε). All open sets in τC can be represented
as a union of cylinder sets, particularly, the open balls mentioned above can be written
B(y, ε) = y<iΣ

ω and B(x, δ) = x<kΣ
ω for some k given an i. Note that the first sentence

implies that for f : Σω → Σω the finiteness property is equivalent to continuity of f .
The following proof is for functions for a single variable, however since multiple inputs

can be combined into the a single input using the tupling function, we do not lose any
generality here.

Theorem 3.4 (Computable Functions are Continuous). Every computable string
function f : Y → Y0 is continuous.

Proof. We have a Type-2 Turing machine M such that it computes f . We will prove
continuity by showing that the inverse mappings of open sets in Y0 are open in Y for
each case, or equivalently every base set {w} and wΣω for w ∈ Σ∗ has an open inverse
in Y .
Case Y0 = Σ∗: The TM M will halt after a finite steps since the output w is finite.
Now, there exist y ∈ Σω such that f(y) = w, and since M halts after finite steps, it has
only read a prefix u of y before printing w. Hence f(uΣω) ⊆ w, since this is true for all
such y. We have the f−1(w) is open.
Case Y0 = Σω: Similar to the last case, given a base set wΣω in Y0, there exists y ∈ Σω

such that M on input y prints the prefix w of the output after finite steps. Seeing as
M halts after finite steps, it has only read a prefix u of y before printing w. Hence
f(uΣω) ⊆ w, since this is true for all such y. We have the f−1(wΣω) is open.
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In the case that Y ⊆ Σ∗ take y := u0ω. □

4. Naming Systems

In classical computability theory, we work with finite objects such as natural
numbers or finite strings. These can be easily handled by Turing machines because
they have finite descriptions. However, in computable analysis, we often deal with
more complex mathematical objects — such as real numbers, infinite sequences, and
continuous functions — which cannot be completely described by any finite amount
of data. To handle these infinite or continuous objects, we introduce the concept of
representations, also called naming systems.

Definition 4.1 (Representation). A representation of a set X is a partial surjective
function δ :⊆ Σω → X, and a notation of X is a partial surjective function
ν :⊆ Σ∗ → X.

Since δ is partial and surjective, not every sequence names something, and some
elements may have multiple names. Computers and Turing machines can only process
finite information. However, many mathematical objects, such as real numbers, have
infinite precision. For example, the number π has infinitely many decimal digits. To
allow machines to work with such objects, we describe them using infinite sequences that
encode enough information to approximate the object to any desired degree of accuracy.
Representations thus allow us to apply discrete computation to continuous structures by
translating real-world mathematical objects into infinite sequences that machines can
understand and process.Such representation-based approaches are not limited to real
numbers but also apply to structures such as computable Hilbert spaces and frames
[19].

For example lets see the representation of real number. A common representation
of a real number x ∈ R is via a fast-converging Cauchy sequence of rational numbers.
In this case, a name for x is a sequence (qn)n∈N such that |x − qn| ≤ 2−n for all n.
Each rational qn can be encoded as a finite binary string, and the entire sequence forms
an element of Σω. A Turing machine can read this sequence to approximate x with
arbitrary precision.

Computability Relative to Representations.

Definition 4.2. Let δX : Σω → X and δY : Σω → Y be representations of sets X and
Y . A function f : X → Y is said to be (δX , δY )–computable (–continuous) if there
exists a computable (continuous) function F : Σω → Σω called a Σω–representation of
f , such that:

δY (F (p)) = f(δX(p)) for all p ∈ dom(f ◦ δX).

That is, f is computable if, for any name p of an input x ∈ X, the machine can produce
a name F (p) of the output f(x) ∈ Y .

Different representations can be used for the same mathematical object. For example,
a real number may be represented using a Cauchy sequence, a nested interval sequence,
or a signed-digit expansion.

Given two representations δ1 and δ2 of the same set X, we say that:
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• δ1 is reducible to δ2, written δ1 ≤ δ2, if there exists a computable function
G : Σω → Σω such that,

δ1(p) = δ2(G(p)) for all p ∈ dom(δ1).

if G is continuous and not computable we write δ1 ≤t δ2.
• δ1 and δ2 are equivalent (δ1 ≡ δ2) if each is reducible to the other. If δ1 and
δ2 are continually reducible to each other, then way say they are continually
equivalent (δ1 ≡t δ2).

Representations (or naming systems) are the foundation of computable analysis.
They allow us to extend the theory of computation to continuous domains by encoding
complex mathematical objects as infinite sequences. (δX , δY )–continuity is equal to
topological continuity only when we are working with admissible representations. A
representation δ of a topological space X is called admissible if δ is continuous and if
the identity I : X → X is (δ′, δ)–continuous for any continuous representation δ′ of X.
[25, 26]

5. Computability on the Real Numbers

In the framework of Type-2 computability, real numbers are considered computable if
they can be named by infinite sequences over a finite alphabet. This is achieved through
the use of appropriate representations. Two common and equivalent representations of
real numbers are the interval representation and the Cauchy representation.

Definition 5.1 (Interval Representation of Real Numbers). Let

I = {[a, b] ⊆ R | a, b ∈ Q, a ≤ b}
denote the set of all closed intervals with rational endpoints.

A real number x ∈ R is said to have an interval representation if it is represented by
a sequence of intervals

([an, bn])n∈N ⊆ I
satisfying the following conditions:

(1) x ∈ [an, bn] for all n ∈ N,
(2) bn − an ≤ 2−n for all n ∈ N.

Interval representation is denoted by ρint. A name p ∈ Σω represents a real number x
under ρint if p encodes such a sequence of intervals converging to x.

The corresponding representation is called the interval representation, denoted by
ρint. For a name p ∈ Σω, we define ρint(p) = x if p encodes a sequence of intervals as above.
Now lets see an example.

Example 5.2 (Interval Representation of
√
2.). Let x =

√
2. A valid interval

representation might be:

[a0, b0] = [1, 2], [a1, b1] = [1.4, 1.5], [a2, b2] = [1.41, 1.42], [a3, b3] = [1.414, 1.415], . . .

Each interval contains
√
2, and the length of the interval shrinks as 2−n. A Type-2

machine can output the endpoints an, bn one pair at a time.
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Definition 5.3 (Cauchy Representation of Real Numbers). A real number x ∈ R is said
to have a Cauchy representation if it is represented by a sequence of rational numbers

(qn)n∈N ⊆ Q

such that

|x− qn| ≤ 2−n for all n ∈ N.
Such a sequence is called a fast-converging Cauchy sequence. The induced

representation of real numbers is called the Cauchy representation and is denoted by ρC .
A name p ∈ Σω represents x under ρC if it encodes a fast-converging Cauchy sequence
satisfying the above condition.

Example 5.4 (Cauchy Representation of π). Let x = π. A valid Cauchy sequence
might be:

q0 = 3, q1 = 3.1, q2 = 3.14, q3 = 3.141, q4 = 3.1415, . . .

where |x− qn| ≤ 2−n. A Turing machine can output each qn with increasing accuracy.

Equivalence of Representations. The interval representation ρint and the Cauchy
representation ρC are computably equivalent. There exist computable functions
which transform names from one representation into names for the other. Both
representations yield the same class of computable real numbers.

Definition 5.5 (Computable Real Number). A real number x ∈ R is called
computable (ρ–computable) if there exists a computable sequence p ∈ Σω such that
ρ(p) = x, where ρ is either ρint or ρC.

Equivalently, a real number is computable if there exists a Turing machine which, on
input n, produces either:

(1) a rational qn such that |x− qn| ≤ 2−n, or
(2) an interval [an, bn] with x ∈ [an, bn] and bn − an ≤ 2−n.

5.1. Computable Functions f : R → R. Once real numbers have been represented
using infinite sequences (such as fast-converging Cauchy sequences or nested intervals),
we can define computability for real-valued functions.

Definition 5.6 (Computable Function). A function f : R → R is said to be
computable with respect to ρ if it is (ρ, ρ)–computable where ρ is any representation
of R equivalent to ρC . That is, there exists a computable word function F : Σω → Σω

such that

ρ ◦ F (p) = f ◦ ρ(p) ∀p ∈ dom(f ◦ ρ).

That is, a Type-2 machine can compute a name of f(x) given any valid name of x,
using only finite information at each stage. From our discussions so far, we see that

(1) Computable functions are necessarily continuous.
(2) The computation must operate on the names (representations), not on exact

real values.
(3) The output name must approximate f(x) with arbitrarily high precision.
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Example 5.7. Let f(x) = x
2 . Suppose x is represented by a Cauchy sequence (qn) with

|x− qn| ≤ 2−n. Then define:

rn =
qn
2
.

It follows that |f(x)− rn| ≤ 1
2 · 2

−n = 2−(n+1), so (rn) is a valid Cauchy name for f(x).
Thus, f(x) = x/2 is computable.

Example 5.8. Consider the function, f(x) =

{
1 if x = 0

0 otherwise
This function is

discontinuous at x = 0, and therefore not computable in the Type-2 framework. A
machine would have to determine whether the input x is exactly zero, which cannot be
done by inspecting any finite prefix of its representation.

In classical mathematics, the composition of two continuous functions is again
continuous. A similar and important result holds in computable analysis.

Theorem 5.9 (Closure under Composition). Let f, g : R → R be computable functions
with respect to a standard representation ρ (such as the Cauchy representation ρC).
Then the composition

f ◦ g : R → R, x 7→ f(g(x))

is also computable [26].

Example 5.10. Let g(x) = x
2 , a computable function and f(x) = x2, also computable.

Then (f ◦ g)(x) = f
(
x
2

)
=

(
x
2

)2
= x2

4 is also computable.

The class of computable functions f : R → R is closed under composition.In
addition to algebraic operations and composition, computable analysis also studies the
computability of operators acting on functions, such as the translation operator, which
has been investigated in detail within the Type–2 framework [17]. This allows the
construction of complex computable functions by composing simpler ones, an essential
feature for building practical computational models in analysis [21].

5.2. Computability of Algebraic Operations. In computable analysis, we ask
whether common real-valued functions such as addition, subtraction, multiplication, and
inversion are computable. The answer is yes — all of these operations are computable
in the Type-2 model with respect to standard representations. In all of these proofs we
are showing how using the cauchy names of a point in the domain of a function, we can
create a cauchy name of the value of the function at that point in the domain.

Theorem 5.11. The following functions are computable

(1) (x, y) 7→ x+ y
(2) (x, y) 7→ x− y
(3) (x, y) 7→ x · y
(4) (x, y) 7→ max(x, y)
(5) x 7→ 1

x , on the domain R \ {0}

Proof. (1) Let (xn) and (yn) be Cauchy names for x and y, i.e.,|x−xn| ≤ 2−n, |y−yn| ≤
2−n. Define zn = xn + yn. Then

|x+ y − zn| ≤ |x− xn|+ |y − yn| ≤ 2−n + 2−n = 2−n+1.
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To ensure |(x + y) − zn| ≤ 2−n, redefine z′n = xn+1 + yn+1 Then |x + y − z′n| ≤ 2−n

Thus, (z′n) is a Cauchy name for x+ y, and addition is computable. □

See that in this proof we are asserting the existence of a Type-2 TM which takes
consecutive rational numbers xn+1 and yn+1 and adds them to give us the rational
z′n = xn+1 + yn+1. We know that such a TM exists from classical computability theory
[13].

Proof. (2) Let (xn), (yn) be Cauchy names. Define zn = xn+1 − yn+1. Then:

|x− y − zn| ≤ |x− xn+1|+ |y − yn+1| ≤ 2−(n+1) + 2−(n+1) = 2−n.

So (zn) is a valid Cauchy name for x− y, hence subtraction is computable. □

Proof. (3) Let (xn), (yn) be Cauchy names. Assume we have approximations |x−xn| ≤
2−n and |y − yn| ≤ 2−n. Define zn = xn+2 · yn+2. We estimate the error

|xy − zn| = |xy − xn+2yn+2| ≤ |x− xn+2||y|+ |y − yn+2||xn+2|.

Assume bounds |x|, |y| ≤ M (this can be obtained from the name). Then

|xy − zn| ≤ 2−(n+2)M + 2−(n+2)(M + 1) ≤ 2−n.

Thus, multiplication is computable. □

Proof. (4) We use the identity max(x, y) = x+y+|x−y|
2 . From earlier proofs we know that

x + y is computable, x − y is computable, Absolute value |x − y| is computable since
it maps x 7→ max(x,−x), which is continuous and piecewise linear, Division by 2 is
computable.

Therefore, by closure under composition, max(x, y) is computable.
Proof (5): Let x ∈ R \ {0} with Cauchy name (xn), such that |x− xn| ≤ 2−n.

Since x ̸= 0, there exists m ∈ N such that |x| ≥ 2−m. Then for large enough n, say
n ≥ m + 2, we have |xn| ≥ |x| − |x − xn| ≥ 2−m − 2−n > 0. Define zn = 1

xn+m+2
. We

estimate ∣∣∣∣ 1x − 1

xn+m+2

∣∣∣∣ = ∣∣∣∣xn+m+2 − x

x · xn+m+2

∣∣∣∣ ≤ 2−(n+m+2)

|x · xn+m+2|
.

As both x and xn+m+2 are bounded away from zero, the denominator is bounded
below, so the error is ≤ 2−n. Hence, the sequence (zn) is a valid Cauchy name for 1

x ,
and inversion is computable on R \ {0}. □

All the functions listed above are computable under standard representations of real
numbers. This allows arithmetic and comparison operations to be composed safely
within computable functions.

6. Representations of Continuous Real Functions

Let C(R) denote the set of all total continuous functions f : R → R. In
computable analysis, we represent such functions using effective descriptions that
allow for algorithmic manipulation. This section introduces formal representations of
continuous real functions, along with the computability of basic operations such as
evaluation, maximum, integration, and differentiation.
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Definition 6.1 (Representation δR of C(R)). We define a representation δR of the space
C(R) based on rational open rectangles.

Let p ∈ Σω. Then δR(p) = f ∈ C(R) if and only if p encodes an infinite sequence of
rational quadruples

(ui, vi, xi, yi) ∈ Q4, i ∈ N,

satisfying the following conditions:

(1) f
(
(ui, vi)

)
⊆ (xi, yi) for all i ∈ N,

(2) for every x ∈ R, there exists some i ∈ N such that

x ∈ (ui, vi).

Each such quadruple can be viewed as defining a rectangle in R2 that approximates
a portion of the graph of f , and the list covers the domain R entirely.

Definition 6.2 (Evaluation Operator). Define the evaluation map

eval : C(R)× R → R

by

eval(f, x) := f(x).

Theorem 6.3. The evaluation map is continuous and computable with respect to the
representations δIR and δC, i.e.,

eval ∈ (δIR, δC, δC)-computable.

Proof. Let δIR be the standard representation of continuous functions f : R → R
via names that allow uniform approximation on rational intervals, and let δC be
the standard Cauchy representation of real numbers. We need to show that there
exists a Type-2 Turing machine M such that for every pair of names (p, q) satisfying
δIR(p) = f and δC(q) = x, the machine M produces a name r such that δC(r) = f(x).
Intuitively, given a name p of f , we can, for every rational interval [a, b], compute
approximations of f on that interval to arbitrary precision. Given a name q of x, we
can obtain rational approximations qn such that |x− qn| < 2−n.

The algorithm proceeds as follows:

(1) From q, extract rational approximations qn of x.
(2) Using p, compute rational approximations of f(qn) within error 2−n.
(3) Output these approximations as the name r of f(x).

By the continuity of f , the sequence (f(qn))n is a Cauchy sequence converging to f(x),
and thus defines a valid δC-name for f(x). Hence, such a machine M exists, and
the mapping(f, x) 7→ f(x) is computable with respect to the given representations.
Continuity follows from the general principle that every computable function between
represented spaces is continuous. Therefore, the evaluation mapeval : C(R) × R →
R, (f, x) 7→ f(x) is (δIR, δC, δC)-computable. □

That is, given a δIR-name of a function f ∈ C(R) and a δC-name of a real number x,
one can compute a δC-name for f(x).
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Definition 6.4 (Dense Set of Polygonal Functions). Let Pg ⊆ C([0, 1]) denote the set of
all piecewise linear functions on [0, 1] whose breakpoints and function values are rational
numbers. Then Pg is dense in C([0, 1]) with respect to the uniform metric

d(f, g) := max
x∈[0,1]

|f(x)− g(x)|.

Definition 6.5. (Representation δC on C([0, 1])) We define a representation δC of the
space C([0, 1]) as follows.

Let p ∈ Σω. Then δC(p) = f ∈ C([0, 1]) if and only if p encodes a sequence (gn)n∈N
of functions from Pg such that

d(f, gn) < 2−n for all n ∈ N.
In other words, the function f is the uniform limit of a fast-converging sequence of
polygonal functions with rational data.

Definition 6.6 (Modulus of Continuity). Let f ∈ C([0, 1]). A function

m : N → N
is called a modulus of continuity for f if for all x, y ∈ [0, 1] and all n ∈ N,

|x− y| ≤ 2−m(n) =⇒ |f(x)− f(y)| ≤ 2−n.

Corollary 6.7. There exists a computable function g such that g(p) is a modulus of
continuity of δC(p), for all p ∈ dom(δC).

6.1. Differentiation is Not a Computable Operation. Differentiation is one of the
most fundamental operations in analysis. For a function f ∈ C1([0, 1]), its derivative is
given by the classical limit:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

It is natural to ask whether this operation is computable in the sense of Type-2 Theory
of Effectivity. That is: if f ∈ C1([0, 1]) is a computable function, is its derivative f ′ also
computable?

Surprisingly, the answer is no. While integration is computable, differentiation is not.

Theorem 6.8. The differentiation operator

Diff : C1([0, 1]) → C([0, 1]), f 7→ f ′

is not computable. That is, there exists a computable function f ∈ C1([0, 1]) such that
f ′ is not computable.

Proof. The proof is based on a classical construction due to Pour-El and Richards (1989),
which uses a sequence of smooth bump functions to encode uncomputable information
into the derivative of a computable function.

We shall encode the halting problem into the derivative of the function. Since the set
of all finite words is countable, we can have a sequence of words such that each work
represents some Turing machine M with an input w.

Let (ϕn)n∈N be a sequence of smooth, computable bump functions with the following
properties:

(1) Each ϕn is supported in a rational interval In ⊆ [0, 1],
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(2) The intervals In are pairwise disjoint,
(3) Each ϕn is normalized such that ∥ϕn∥∞ ≤ 1, and ∥ϕ′

n∥∞ ≤ 2−n,
(4) The sequence (ϕn) is constructed in such a way that ϕn ̸= 0 if and only if the

n-th Turing machine M on the input w halts.

Define the function

f(x) :=

∞∑
n=1

1

2n
ϕn(x).

Since the ϕn have disjoint support and decay geometrically in amplitude, the sum
converges uniformly. Furthermore, each ϕn is smooth and computable, so the sum f is
also computable and belongs to C1([0, 1]). Its derivative is given by:

f ′(x) =

∞∑
n=1

1

2n
ϕ′
n(x),

which also converges uniformly and defines a continuous function.
However, the supports of the ϕn were chosen so that the presence or absence of a

bump at a particular location encodes whether the n-th Turing machine halts on the
input w. Hence, the function f ′ encodes the halting problem.

If f ′ were computable, we could decide whether ϕ′
n is non-zero somewhere, which

would in turn solve the halting problem. Since the halting problem is undecidable, it
follows that f ′ cannot be computable.

Therefore, the differentiation operator is not computable. □

This result demonstrates a fundamental asymmetry in computable analysis. Related
phenomena concerning the computability of linear operators in infinite-dimensional
settings have been observed for classes such as Hilbert–Schmidt operators, further
illustrating the delicate relationship between continuity and computability [18]. while
integration is a computable operation under standard representations, differentiation is
not. Even when starting with a computable and continuously differentiable function, its
derivative need not be computable.

This reflects the analytical fact that differentiation is a highly sensitive process: it
depends on the behavior of a function in an infinitesimally small neighborhood, and
such local information may not be recoverable from any finite approximation[21].

6.2. Computability of Integration. While differentiation is not a computable
operation in general, integration turns out to be much better behaved. Given a
computable continuous function, one can compute definite integrals of the function over
any computable interval.

Theorem 6.9. Let f ∈ C(R) be computable with respect to the representation δIR, and
let a, b ∈ R be computable real numbers. Then the integral

Int(f, a, b) :=

∫ b

a

f(x) dx

is a computable real number. In other words,

Int ∈ (δIR, δC, δC, δC)-computable.
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Proof. Like earlier proofs, we will describe here a process for computing a Cauchy name
for the value of the integral based on the inputs, thus proving the computability of the
definite integral operator.

Since f ∈ C(R), it is in particular continuous on the bounded interval [a, b]. By the
Heine–Cantor theorem, f is uniformly continuous on [a, b].

Given a desired precision 2−n, we divide the interval [a, b] into N subintervals of
equal length δ = b−a

N , where N is chosen sufficiently large so that the Riemann sum
approximates the integral within 2−n.

Since f is computable, we can compute approximations of f(xk) for each evaluation
point xk = a+ kδ, to within 2−n accuracy using the modulus of continuity.

The Riemann sum is then given by SN :=
∑N−1

k=0 f(xk) ·δ. We can compute each term
in the sum to within 2−n/N , and thus the total sum within 2−n. The sequence of such

sums (SN ) converges effectively to the integral
∫ b

a
f(x) dx, giving us a Cauchy name of

the integral. Therefore, the integral is computable. □

Unlike differentiation, integration is a stable and computable operation. This
aligns with analytical intuition: integration ”averages” values over an interval, while
differentiation depends on local and potentially unstable behavior. In computable
analysis, this makes integration a fundamentally computable process [4, 22].

7. Open and Compact Subsets

In computable analysis, we do not attempt to represent arbitrary subsets of R, because
the power set P(R) is uncountable, whereas the space of infinite sequences over a finite
alphabet Σω is only countably infinite. Hence, we focus on subsets of R that can be
effectively described — such as open and compact sets.

This section introduces representations for such sets and describes how these
representations are used in computability theory. Let O(R) and K(R) denote the open
and compact sets of R respectively.

7.1. Representation of Open Sets. Let ρop be a representation of the set O(R)
of open subsets of R, defined as follows, take p ∈ Σω. Then ρop(p) = X ⇐⇒
p encodes a sequence u0, v0, u1, v1, · · · ∈ Q, with ui < vi, such that

X =
⋃
i∈N

(ui, vi).

This representation is surjective. The sequence p is called a ρop-name of the open set X.
Note that open sets are described here as countable unions of open rational intervals. The
representation ρop is admissible, and supports the following computational properties:

Theorem 7.1. Let f : R → O(R). Then

(1) f is continuous if and only if it is (ρC, ρop)-continuous,
(2) f is computable if and only if it is (ρC, ρop)-computable.

In addition

• Union and intersection of open sets are computable operations under the
signature (ρop, ρop, ρop),
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• If f : R → R is computable, then the preimage map

Hf : O(R) → O(R), Hf (X) = f−1(X)

is (ρop, ρop)-computable.

7.2. Representations of Compact Sets. Now we define representations of compact
subsets of R. Let K(R) denote the set of compact subsets of R. Several different but
related representations are used:

Definition 7.2 (Compact Subsets of R). Let K(R) denote the collection of all compact
subsets of the real line R. Recall that a set K ⊆ R is compact if and only if it is closed
and bounded.

Definition 7.3 (Closed Set Representation ρc [26]). The closed set representation ρc
represents closed subsets of R via enumerations of their complements.

Let p ∈ Σω. Then

ρc(p) = X ⊆ R ⇐⇒ ρop(p) = R \X,

where ρop denotes the standard representation of open sets by enumerations of open
rational intervals.

This representation encodes a closed set by effectively listing all rational open intervals
disjoint from it. It is particularly useful for reasoning about negative information, i.e.,
which points do not belong to the set

Definition 7.4 (Closed and Bounded Representation ρcb [4]). The representation ρcb
is defined for compact subsets of R.

Let p ∈ Σω. Then

ρcb(p) = X

if and only if there exist a rational number u ∈ Q and a name q ∈ Σω such that

X ⊆ [−u, u] and ρop(q) = R \X.

Since compact subsets of R are precisely those that are closed and bounded, the
representation ρcb is well suited for computable analysis on compact sets. The explicit
bound [−u, u] provides effective control over the size of the set.

Definition 7.5 (Weak Covering Representation ρw [26]). The weak covering
representation ρw represents compact sets by enumerating finite open covers.

Let p ∈ Σω. Then

ρw(p) = X

if and only if p enumerates all finite families of open rational intervals whose union
covers X.

Definition 7.6 (Strong Covering Representation ρ [4]). The strong covering
representation ρ is defined as follows.

Let p ∈ Σω. Then

ρ(p) = X

if and only if p enumerates exactly the minimal finite coverings of X by open rational
intervals.
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7.3. Computational Heine–Borel Theorem. The classical Heine–Borel theorem
says that in R, compact sets are exactly those that are closed and bounded. The
computational version compares the representations of such sets.

Theorem 7.7. We have the following equivalence and reduction chain:

ρ ≡t ρw ≡t ρcb ≥t ρc.

This means

(1) All these representations define the same class of computable compact sets,
(2) ρ, ρw, and ρcb are computationally equivalent,
(3) ρc is weaker (some operations computable in others are not computable here).

Computable Operations on Compact Sets. Let X,Y ∈ K(R). The following
operations are computable with respect to appropriate representations

(1) X ∪ Y , X ∩ Y : computable under (ρ, ρw, ρcb),
(2) max(X), min(X): computable under (ρ, ρC), but not continuous under (ρw, ρC),
(3) If f : R → R is continuous and computable, then the image map

Hf (X) := f [X]

is computable under both (ρw, ρw) and (ρ, ρ).
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